The effects of stochastic forces on planetary systems and Saturn's rings

I. Multi-planetary systems

- Standard Model
- Turbulent disc

2. Saturn's rings

Exoplanets

-nill Carrier $\%$	1:58 PM	
Back Milky Way	Hide Technobabble	

Sun ${ }^{\text {ear }}$

I. Multi-planetary systems

- Standard Model
- Turbulent disc

2. Saturn's rings

Planet migration

All planets migrate
Migration rates vary

Mean motion resonance

Resonant planetary systems

- Convergent migration leads to resonant capture
- N-body or hydrodynamical simulation
- Successful in explaining a range of system: GJ876, 55 Cancri, HD73526, ...

Lee \& Peale 2002, Kley \& Nelson 2008, Sandor et al 2007

... HD45364

Formation scenario

Have:
- Two planets
- Disc

- Infinite number of resonances
- How to choose?
- Initial positions
- Migration speed is crucial
- Resonance width and libration period define critical migration rate

N-Body simulations

Hydro simulations

Massive disc (5 times MMSN)

- Short, rapid Type III migration
- Passage of $2: 1$ resonance
- Capture into 3:2 resonance

Large scale-height (0.07)

- Slow Type I migration once in resonance
- Resonance is stable
- Consistent with radiation hydrodynamics

Formation scenario leads to improved 'fit'

Parameter	Unit	Correia et al. (2009)		Simulation F5	
$M \sin i$	[M ${ }_{\text {Jup }}$]	0.1872	0.6579	0.1872	0.6579
M_{*}	$\left.M_{\odot}\right]$. 82		
a	AU]	0.6813	0.8972	0.6804	0.8994
e		0.17 ± 0.02	0.097 ± 0.012	0.036	0.017
λ	[deg]	105.8 ± 1.4	269.5 ± 0.6	352.5	153.9
ϖ^{a}	[deg]	162.6 ± 6.3	7.4 ± 4.3	87.9	292.2
$\sqrt{\chi^{2}}$			79	2.76	3.51)
Date	[JD]	245	3500		500

Rein, Papaloizou \& Kley 2010

I. Multi-planetary systems

- Standard Model
- Turbulent disc

2. Saturn's rings

Turbulent disc

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties

Animation from Nelson \& Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Level of abstraction

Analytic model

Describing evolution in a statistical manner Adams 2008, Rein \& Papaloizou 2009

$$
\begin{aligned}
\Delta a & =\sqrt{4 \frac{D t}{n^{2}}} \\
\Delta e & =\sqrt{2.5 \frac{\gamma D t}{n^{2} a^{2}}}
\end{aligned}
$$

N -body simulations

Generating random forces, integrating planets directly Rein \& Papaloizou 2009, Baruteau \& Lin 2010

Full 3D MHD simulations

Stratification, dead zones, non-ideal MHD,...
Nelson \& Papaloizou 2004, Rein et al. 2013

Hamiltonian formalism

$$
H \rightarrow H-m\left(F_{x} x+F_{y} y\right)=H-m(\mathbf{r} \cdot \mathbf{F})
$$

$$
\begin{aligned}
\dot{G}_{F} & =m\left(\frac{\partial}{\partial \lambda}+\frac{\partial}{\partial \varpi}\right)(\mathbf{r} \cdot \mathbf{F})=m(\mathbf{r} \times \mathbf{F}) \cdot \hat{\mathbf{e}}_{z} \\
\dot{E}_{F} & =m n \frac{\partial}{\partial \lambda}(\mathbf{r} \cdot \mathbf{F})=m(\mathbf{v} \cdot \mathbf{F}) \\
\dot{\varpi}_{F} & =\frac{\sqrt{\left(1-e^{2}\right)}}{n a e}\left[F_{\theta}\left(1+\frac{1}{1-e^{2}} \frac{r}{a}\right) \sin f-F_{r} \cos f\right] \\
\dot{\lambda}_{F} & =-m\left(\frac{\partial}{\partial L}+n \frac{\partial}{\partial E}\right)(\mathbf{r} \cdot \mathbf{F}) \\
& =\left(1-\sqrt{1-e^{2}}\right) \dot{\varpi}_{F}+\frac{2 a n}{\mathcal{G} M}(\mathbf{r} \cdot \mathbf{F}),
\end{aligned}
$$

Analytic growth rates

$$
\begin{aligned}
(\Delta a)^{2} & =4 \frac{D t}{n^{2}} \\
(\Delta e)^{2} & =2.5 \frac{\gamma D t}{n^{2} a^{2}} \\
(\Delta \varpi)^{2} & =\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\left(\Delta \phi_{1}\right)^{2}}{(p+1)^{2}} & =\frac{9 \gamma_{f}}{a_{1}^{2} \omega_{l f}^{2}} D t \\
(\Delta(\Delta \varpi))^{2} & =\frac{5 \gamma_{s}}{4 a_{1}^{2} n_{1}^{2} e_{1}^{2}} D t
\end{aligned}
$$

N-body simulations

Rein \& Papaloizou 2009

Correction factors are important

$$
\begin{aligned}
& (\Delta a)^{2}=4 \frac{D t}{n^{2}} \\
& (\Delta \varpi)^{2}=\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}} \\
& (\Delta e)^{2}=2.5 \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

Rein \& Papaloizou 2009, Rein 2010

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable

Modification of libration patterns

- HDI283II has a very peculiar libration pattern
- Can not be reproduced by convergent migration alone
- Turbulence can explain it
- More multi-planetary systems needed for statistical argument

I. Multi-planetary systems

- Standard Model
- Turbulent disc

2. Saturn's rings

Cassini spacecraft

NASA/JPL/Space Science Institute

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Observational evidence of non-Keplerian motion

Tiscareno et al. 2010

Two different approaches

Analytic model

$$
\begin{aligned}
\Delta a & =\sqrt{4 \frac{D t}{n^{2}}} \\
\Delta e & =\sqrt{2.5 \frac{\gamma D t}{n^{2} a^{2}}}
\end{aligned}
$$

Describing evolution in a statistical manner
Rein \& Papaloizou 2009, 2010

N -body simulations
Measuring random forces or integrating moonlet directly Crida et al 2010, Rein \& Papaloizou 2010

Effects contributing to the eccentricity evolution

Laminar collisions

Particles collisions

Laminar horseshoe
Laminar circulating

Equilibrium eccentricity

Particles circulating
Clumps circulating

Damping

Rein \& Papaloizou 2010, Crida et al 2010

... semi-major axis evolution

Particles collisions

Particles horseshoe

Particles circulating
Clumps circulating

Random walk in semi-major axis

+Net "Type l" migration

GravTree

-3D collisional N-body simulations

- Large N (~few million particles)
- Barnes-Hut tree used for gravity and collisions
- Parallelisation: pthreads and MPI
- Real-time visualisations
, Yseo0 0 s0enSa7 splU4xa8fPU9xPS?
j6faYnLTas46TU9Z3 -TO4Z8Ju008LC0S84ac oTUCz50001eLsanYaOu r YseJSh55s5eYTa5ay5 z6xPJh96wgVG6V6Uwf'

```
?vs421CTVOT4LeSu!
    - 抔-
        !Ge
        !6
        *i"2h|?,
``` with OpenGL

\section*{Particle trajectories}

Rein \& Papaloizou 2010, Crida et al 2010

\section*{Results I: Moonlet is undergoing a random walk}

\section*{Confirm analytic expression for mean eccentricity}

Confirm analytic expression for random walk in semi-major axis

Identify most important effects
Collisions (equipartition)
Stochastic forces from circulating particles Stochastic forces from circulating clumps

Rein \& Papaloizou 2010, Crida et al 2010

\section*{Results II: Comparison with observations}

\section*{Conclusions}

\section*{Conclusions}

\section*{Multi-planetary systems and turbulence}

Multi-planetary system provide insight in otherwise unobservable formation phase HD45364 formed in a massive disc
Turbulence can be traced by observing multi-planetary systems HD I283II has very peculiar libration pattern
Distinctive from non-turbulent migration scenarios
Realistic MHD simulations will give a better estimate of diffusion coefficient More planetary systems allow a statistical argument

\section*{Moonlets in Saturn's rings}

Small scale version of the protoplanetary disc
Dynamical evolution can be directly observed
Evolution is dominated by random-walk
Caused by collisions and gravitational wakes
Might lead to independent age estimate of the ring system

\section*{Thank you for your attention.}```

